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Abstract Magnetic nanoparticles of cobalt ferrite have

been synthesized by citrate precursor method. TG-DSC

studies have been made to get the idea of the optimum

temperature of annealing that could lead to the formation of

nanoparticles. Annealing the citrate precursor was done at

450, 650, and 973 �C. The X-ray diffraction (XRD) studies

and the scanning electron microscopy (SEM) have been used

for characterization. The data from vibrating sample mag-

netometer and photoluminescence spectrometer (PL) have

been analyzed for exploring their applications. Using the

Scherrer formula, the crystallite size was found to be 25, 32,

and 43 nm, respectively, using the three temperatures. The

particle size increased with annealing temperature. Rietveld

refinements on the X-ray (XRD) data were done on the cobalt

ferrite nanoparticles (monoclinic cells) obtained on anneal-

ing at 650 �C, selecting the space group P2/M. The values of

coercivity (1574.4 G) and retentivity (18.705 emu g-1) were

found out in the sample annealed at 650 �C while magneti-

zation (39.032 emu g-1) was also found in the sample

annealed at 973 �C. The photoluminescence (PL) property

of these samples were studied using 225, 330, and 350 nm

excitation wavelength radiation source. The PL intensity was

found to be increasing with the particle size.
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Introduction

The last few decades have witnessed exponential growth in

the applications of commercial electronics following dis-

covery of certain very useful materials. A typical example

is cobalt ferrite which has gained enormous significance on

account of its high electromagnetic performance [1, 2]

besides its excellent chemical stability, good mechanical

hardness, and wonderfully high positive first order crys-

talline anisotropy constant [3]. The quest for magnetic

nanoparticles that could be used for high density magnetic

recording sensors etc., has attracted many workers toward

the cubic spinel-structured cobalt ferrite of variable particle

size in which Co2? and Fe3? occupy tetrahedral/octahedral

sites in the fcc lattice of O2- ions [1, 4]. The properties of

such materials (hence, their applications) as well as their

particle size have been found to be greatly depending upon

the method of preparation and the annealing/sintering

temperature [5–11]. Out of the many synthetic techniques,

the sol–gel methods have been found to be effective in

getting homogeneous nanoparticles at relatively low tem-

perature [9–11].
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Thermogravimetric and DSC data and their kinetic and

mechanistic analysis are frequently used to understand the

thermal stability of materials and also to study the phase

changes, thermodynamics and kinetics of various trans-

formations taking place upon heating [12–22]. The two

techniques together give good idea of the completion of

such steps. Earlier too, these techniques have been applied

in case of chromites and aluminates [23, 24] to get an idea

of the minimum temperature at which the decomposition

steps are complete so that effective annealing could be

started. Thus, in order to achieve optimization of the heat

treatment conditions to get nanoparticles of cobalt ferrite of

significant saturation magnetization (Ms), magneto crys-

tallization anisotropy (K), coercivity (Hc), and retentivity

values [25, 26], the citrate precursor method has been tried

as in the case of chromites and aluminates. The citrate gel

has been subjected to TG-DSC analysis to get idea of the

lowest and the optimum temperature of annealing. It is

believed that heat treatment leads to condensation reactions

of the metal precursor, which leads to the formation of

three dimensional inorganic networks [27] involving strong

and rigid metal-oxo-metal (M-O-M) bridges which poly-

merize and often lead to formation of crystalline clusters as

upon further heating, the particles come in contact with

each other and grow.

While the TG-DSC technique has been employed in the

present work for predicting the optimum temperature of

annealing, the X-ray diffraction (XRD) studies and the

scanning electron microscopy (SEM) have been used for

characterization. The data from vibrating sample magne-

tometer (VSM) and photoluminescence spectrometer (PL)

have been analyzed for exploring their applications.

Experimental

Materials

Samples of nano-sized cobalt ferrite powder were prepared

by the citrate precursor method. Ferric nitrate and cobalt

nitrate (AR) were taken in stoichiometric proportions as the

starting materials. Aqueous solutions of these salts were

prepared separately by dissolving the respective salts in

minimum amount of deionized water while stirring

constantly. The two solutions were then mixed together.

Aqueous solution of citric acid was prepared in adequate

quantity by weight and was added to the mixture of the salt

solutions. The mixture was heated at a temperature in the

range 60–80 �C for 2 h with continuous stirring. This

solution was allowed to cool down to room temperature,

and finally, it was dried at 60–65 �C in an oven until it

formed a brown color fluffy mass.

Methods

The dehydrated gel was subjected to TG-DSC studies in N2

atmosphere with heating rate programed at 10 �C min-1.

The TGA-DSC curve of the sample was obtained on TG-

DSC 1 (Mettler). Scherrer Formula (D = 0.9 k/b Cosh) was

used to calculate the particle size [28]. SEM (Model: Quanta

200 MK 2 Series FEI) was used for confirming the crystallite

sizes (3000, 5000, 6000, 10000 and 12000 magnifications).

On the basis of the TG-DSC curves, the precursor was

annealed at different temperatures to give cobalt ferrite

powder that was later proved to be nano-sized particles.

The photoluminescence studies were made using 225, 330,

and 350 nm excitation wavelength source.

Results and discussion

Thermal analysis

The TG-DSC curves exhibited a clear first step dehydration

around 150 �C followed by a sharp exo peak which is

accompanying the second step. Sample dried below this

threshold temperature has a tendency to absorb moisture.

The precursor sample, dried at 100 �C was allowed to

absorb moisture in air. Its TG-DSC curves were recorded

under the same conditions (N2/10 �C min-1). This was

done to get an idea of a minimum temperature for

annealing. Dehydration takes place in the first step of the

5-step decomposition taking place up to 450 �C (Fig. 1).

After this temperature, only curing is evident and that too

in DSC. So this temperature (450 �C) was chosen as the

temperature for annealing in an attempt to go for a low

temperature annealing to get cobalt ferrite nanoparticles.

Annealing was also done at 650 and 973 �C. Increasing the

annealing temperature is bound to bring more crystallinity.

Thus the samples of the gel were heated at 450, 650, and

973 �C for 1 h in a muffle furnace. As expected, it has been

found latter that the crystallite size is increasing with the

annealing temperature on account of condensation reac-

tions that may be accompanying heat treatment (Fig. 2).

XRD studies

The formation of nanoparticles (of cobalt ferrite) was

checked by XRD technique using an X-ray Diffractometer

(Phillips PW1710, Holland) was used [CuKa radiation

k = 1.5406 Å between the Bragg angles 25 and 65�]. The

XY data (2h vs. intensity) obtained from this experiment

were plotted with the Win PLOTR program which

furnished the angular positions of the peaks [29]. The

dimensions of the unit cell (hkl-values) and space group of
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the nanoparticles were obtained using the TREOR program

in the FullProf 2000 software package. Refinement was

carried out through the profile matching routine of FullProf

[30]. The Bragg peaks were modeled with the Pseudo-

Voigt function and the background was estimated by linear

interpolation between selected background points. The

particle size was calculated using the Scherrer formula [24,

28] and was found to be 25, 32, and 43 nm using different

annealing temperatures of 450, 650, and 973 �C respec-

tively. The XRD patterns are shown in Fig. 2.
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Fig. 1 TG-DSC curves of the

rehydrated coprecipitated

cobalt(II) citrate-iron citrate gel

in N2 atmosphere
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Fig. 2 The XRD curves of the three powder-samples obtained upon

annealing at different temperatures
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Fig. 3 Rietveld fitting for the sample obtained after annealing at

650 �C

Table 1 The crystal data and refinement factors of CoFe2O4 nano-

particles (formed upon annealing at 650 �C) as obtained from X-ray

powder diffraction data

Parameter Result Description of parameter

Crystal

System

Monoclinic

Space

group

P2/M (10)

a/Å 7.2960

b/Å 15.6840

c/Å 6.0635

b/� 110.328

V/Å3 650.6317

Rp 109.0 Rp (profile factor) = 100[R|yi - yic|/R|yi|],

where yi is the observed intensity and yic

is the calculated intensity at the ith step.

Rwp 58.1 Rwp (weighted profile

factor) = 100[Rxi|yi-yic|
2/Rxi(yi)

2]1/2,

where xi ¼ 1=r2
i and r2

i is variance of

the observation.

Rexp 44.7 Rexp (expected weighted profile

factor) = 100[(n - p)/Rxi(yi)
2]1/2,

where n and p are the number of profile

points and refined parameters,

respectively.

RB 0.924 RB (Bragg factor) = 100[R|Iobs - Icalc|/

R|Iobs|], where Iobs is the observed

integrated intensity and Icalc is the

calculated integrated intensity.

RF 2.98 RF (crystallographic RF

factor) = 100[R|Fobs - Fcalc|/R|Fobs|],

where F is the structure factor, F = H(I/
L), where L is the Lorentz polarization

factor.

v2 1.689 v2 = Rxi(yi - yic)
2

d 1.1496 d (Durbin–Watson

statistics) = R{[xi(yi - yic) -

xi-1(yi-1 - yic-1)]2}/R[xi(yi-yic)]
2

QD 1.8417 QD = expected d

S 1.3 S (goodness of fit) = (Rwp/Rexp)
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Rietveld refinements on the X-ray (XRD) data for the

sample of the CoFe2O4 nanoparticles which were obtained

after annealing at 650 �C were done selecting the space

group P2/M. Fig. 3 illustrates the observed, calculated, and

difference XRD profiles for the nanoparticles after the final

cycle of refinement. It can be seen that the profiles for the

observed and the calculated one are perfectly matching.

The value of v2 comes out to be 1.689, which may be

considered very good for estimations. The profile fitting

procedure adopted was minimizing the v2 function [31].

The XRD analyses thus, indicated that the nanoparticle has

a monoclinic unit cell. The crystal data and refinement

factors as obtained from the XRD data have been presented

in Table 1. The lattice constant for sample annealed at

450 �C was 8.356 A and for that at 973 �C was 8.38 A

with particle size of 25 and 43 nm, respectively. Normally,

a decrease in the particle size results in a decrease of lattice

parameters in ferrite nanoparticles, due to change in oxy-

gen co-ordination number with the cations and contribution

of excess volume of grain boundaries spin. Attempts have

earlier been made to explain the origin of the lattice

expansion in the magnetic nanoparticles [32]. Although

small, but a systematic shift in XRD peak positions is

observed with decrease in particle size.

The Rietveld fitting for sample annealed at 650 �C

indicated monoclinic unit cell having a, b, c, b and V values

of 7.296, 15.684, 6.0635 Å, 110.328(�), and 650.6317 Å3,

respectively. Additional Fe2O3 phase in sample annealed at

650 �C is distributed in such a way that it is favoring a

good hard magnetic material. Super-exchange interaction

might have been playing a vital role here.

The particle morphology has been shown in different

magnifications (Figs. 4, 5). The SEM analysis of the

sample obtained at 650 �C, exhibits formation of individual

grains of different shapes as well as few agglomerated

grains having different dimensions (0.5–0.8 lm) apart

from some submicron-sized grains. The grain size increa-

ses with the increase in temperature and the grain growth

can clearly be seen at 973 �C.

The ferrite samples were magnetically characterized

using VSM. The magnetic parameters obtained from VSM

measurements of these samples of Cobalt ferrite particles

are tabulated in Table 2 and their magnetic hysteresis

curves for the CoFe2O4 nanoparticles are shown in Fig. 6.

The net magnetic moment in the ferrimagnetic materials

depends upon the number of magnetic ions occupying the

tetrahedral and octahedral sites.

The hysteresis loop for sample annealed at 650 �C

shows hard magnetic materials and a decrease in Ms

implies existence of the same phases which can diminish or

decrease the Ms and the first approximation link goes to

existence of some antiferromagnetic phase (Table 2).

Coercivity of CoFe2O4 nanoparticles could be as high as

4,000 Oe [33] when prepared using chemical route and

annealed. The coercivity of the moderate ferrite lies within

the range of 100–1,500 Oe, which is suitable for most of

Fig. 4 SEM images of the sample annealed at 450 �C
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the recording applications. But in most of the hard ferrite

applications, the coercivity is [1,500 Oe [34]. Here, the

coercivity value is large in case of the product obtained

at the low temperature of 450 �C. This may be assigned

as a feature of low temperature synthesis of ferrite

nanoparticles.

The photoluminescence study of the ferrite nanoparti-

cles were studied using 225, 330, and 350 nm excitation

wavelength source. The spectra were found in visible

region and these were independent of the particle size. The

photoluminescence spectra of these nano-materials are

shown in Fig. 7.

The Photoluminescence intensity was found slightly

higher in the sample annealed at 650 and 973 �C. The most

prominent peaks in visible region were three which is

dependent on the particle size. It is well known that color

of glasses shows the phenomenon of absorption in the

visible spectra. The color due to the fluorescence is shown

by the electronic transition with an emission of a photon in

the visible region. Photoluminescence is an important

phenomenon in which the emission of light takes place

from a material under optical excitation. If light of suffi-

cient energy is incident on a material, photons are absorbed

leading to electronic excitations. These excitations then

relax and the electrons return to the ground state. Photo-

luminescence occurs when the radiative relaxation occurs.

Since the excitation wavelength may influence the photo-

luminescence of any material, the absorption of a material

Fig. 5 SEM images of the

particles obtained upon

annealing at a 650 �C and

b 973 �C
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Fig. 6 Magnetic hysteresis curves of CoFe2O4 nanoparticles obtained

upon annealing at a 450 �C, b 650 �C, and c 973 �C
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depends strongly on the energy of the incident light. This

makes the selection of the excitation light so critical in any

photoluminescence study of material. The excitation

wavelength controls the density of photo-excited electrons

and holes and this governs the behavior of these carriers.

Here, the photoluminescence spectrum of the cobalt ferrite

nanoparticles annealed at temperatures 450, 650, and

973 �C have been observed at the excitations at 225, 250,

and 330 nm, respectively. The spectrum consists of

emission peaks at 400 nm (3.09 eV), 480 nm (2.57 eV),

530 nm (2.33 eV), and 650 nm (1.89 eV). It is also

observed that the emission intensity of the peaks depends

on the excitation wavelength. Regarding the mechanism of

PL, it may be due to quantum confinement. This confine-

ment can be explained in terms of shortening of the super-

exchange interaction bond length in the nano-crystalline

ferrite materials, which modifies the electronic structure of

ferrite or in terms of the presence of the fast non-radiative

Table 2 Observed magnetic and particle size parameters of cobalt

ferrite nanoparticles formed at different temperatures

Annealing

temperature/�C

Mr/

emu g-1
Ms/

emu g-1
Hc/Gauss Mean particle

size/nm

450 11.713 35.529 678.60 25

650 18.705 32.018 1574.4 32

973 11.041 39.032 370.91 43
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Fig. 7 Photoluminescence

Spectra of cobalt ferrite

nanoparticles obtained upon

annealing at a 450 �C,
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relaxation channels in nano-crystals which are taking part

at the surface. The PL around 3 eV is indeed mainly due to

the quantum confinement because the peak value approx-

imately agrees with the band gap of ferrite nanomaterials.

The effect of the surface oxide and non-homogenous size is

also important if there is a difference in the energies, which

is associated with the Stokes shift between the absorption-

surface defects or surface oxide. The mechanism of charge

transfer between the trivalent ions appears to be involving a

nonradiative super-exchange process via the intervening

oxide ions that supports the ferromagnetic ordering [35].

The PL has been found to be such that their intrinsic and

extrinsic bands were within the visible range [36].

Conclusions

• The TG-DSC curves of the dehydrated gel formed by

the coprecipitated iron and cobalt citrates exhibits a

clear first step dehydration around 150 �C followed by

an exo peak which is accompanying the second step.

Sample dried below this threshold temperature has a

tendency to absorb moisture. Dehydration takes place

in the first step of the 5-step decomposition taking place

up to 450 �C. After this temperature, only curing is

evident and that too in DSC. So, this temperature

(450 �C) can be chosen as the minimum temperature

for annealing temperature. Annealing was also done at

650 and 973 �C for the sake of comparison.

• The particle size increases with the annealing temper-

ature. The XRD analyses indicated that has a mono-

clinic unit cell and retentivity and the coercivity values

of around 18.7 emu/g and 1574.4 Gauss, respectively,

for the CoFe2O4 nanoparticles obtained upon annealing

at 650 �C. The SEM analysis shows individual grains

of different shapes as well as few agglomerated grains

having different dimensions (0.5–8 lm) are seen in

these cases apart from some submicron-sized grains.

• The grain size increases with the increase in temper-

ature of annealing and the grain growth can clearly be

seen at 973 �C. Magnetization behavior suggests the

possibility of some additional phase at 650 �C.

Decrease of Ms implies existence of some phases

which can diminish or decrease the Ms and first

approximation link goes to existence of some antifer-

romagnetic phase. Loop of the powders obtained on

annealing at 650 �C indicates some hard magnetic

materials.

• A size-dependent photoluminescence spectrum of

nanoferrite was observed in visible region of different

colors only through 250 and 330 nm excitation radia-

tion source.
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